Paralytic hand

Dr. Mouayad Kazem
July-2006

Principles

Radial nerve palsy
Median nerve palsy
Ulnar nerve palsy
Etiology

• Trauma (wound - gun shot - crush)
• Infection
• Degenerative (tunnel carpal syndrome - syringomyelegia - amyotrophic lateral sclerosis)
• Leprosy
Hand muscle groups

Synergistic muscle groups:
- Wrist extensors + fingers flexors + finger adductors
- Wrist flexors + finger extensors + finger abductors

First choice: transfer of synergistic muscle
Quantitative Evaluation of muscles

- **Tension capability**: the Percentage of the combined tension of all muscles under the elbow

- **Distance (excursion)**: the average fiber length in physiologic rest
Muscle strength

MRC system:

- **Grade 0** *Zero*: no contraction
- **Grade 1** *Trace*: palpable contraction
- **Grade 2** *Poor*: move joint but not against gravity
- **Grade 3** *Fair*: move joint against gravity
- **Grade 4** *Good*: moves against gravity and resistance
- **Grade 5** *Normal*: normal strength
Changes after paralysis

Passive structures: tendon sheaths - ligaments - paratenon - areolar tissue skin.

- Tissues undergo structural changes to adapt to the new length and to restore the resting tension.
- Hand unbalance
Changes after transfer

Muscle strength:

Loss of one grade

- **The cause:**
 - It's not loss of tension
 - It's because changes of elastic properties of passive soft tissue.

- **Prevention:**
 - No fascia or immobile tissues cut in the same wound
 - Use of tendon-tunneling forceps
 - Rehabilitation
Changes after transfer

Muscle excursion:
To lengthen a muscle:
- attach the transferred muscle at a tension just above normal resting tension
- casting in a position to relax the tension
Mechanical balance

- Moment (torque) = muscle tension * lever arm
 - Weak muscle may produce high moment with a long lever

- Excursion = moment arm (cm) * angle degree (radian)
Mechanical balance
Planning for tendon transfer

• Work and Attitude of the Patient:
 - Best results:
 • The patient is self-employed
 • Has no one to blame
 • Wants to return to his work
 - Poorest results:
 • The patient blame someone
 • Financial rewards
 • Poor self imaging
 - young or elderly
 - Hand worker or retired
 - Acceptance of the operation
Technical considerations

- A muscle suitable for transfer = dark pink or red
- A muscle not suitable = pale pink / smaller than normal / less excursion
- The straighter the muscle, the more efficient its action
- If an acute angle is necessary, a pulley must be created
- Protect neurovascular bundle
Technical considerations

- Synergic muscles are the best for transfer.

- Transferred tendon must be passed subcutaneously (with exceptions)

- If a transferred tendon must pass through carpal tunnel, it must be deep to all tendons and sheaths.

- Equalize tension on the slips at time of attachment
Technical considerations

- Avoid longitudinal incisions along the path of transfer, protect from adhesions
- Use of tendon tunneler
Technical considerations

• Take care not to cause dynamic imbalance after transfer.
• Supple and mobile joints.
• Splint after operation:
 - position the transferred tendon in relaxation.
 - the functional position of the hand:
 • wrist dorsal flexion
 • MP joint 90°
 • PIP&DIP extended
Trick movements after paralysis

The good patient finds a way around his disability

Problems:
- Tissues become stretched
- The trick may persist after tendon transfer
Trick movements after paralysis

Lateral squeez pinch
- Low ulnar median palsy
- Both (FPL+EPL)
 - Adduction
 - (IP+MP) joints flexion
 - CM joint extension
Trick movements after paralysis

Lateral squeeze pinch cont.

- Late deformity:
 - Flexion contracture (IP joint)
 - Shortening of the web
- Prevention: C splint for the thumb
- Management:
 - EPL from between ulna and radius to its stump
 - Early rehabilitation
 - Best for elderly
 - Abductor opponens
 - Difficult for rehabilitation
Timing of transfer

• Requirement in waiting period:
 - Satisfactory range of passive joint motion
 - Proper splinting - ligamentous release
 (protect from stiffness and joint contracture)
 - Correcting bone malalignment.
 - Restore sensibility
Timing of transfer

- Irreparable nerve loss:
 - As soon as possible + tissue homeostasis

 Tissue homeostasis:
 - Normal skin mobility
 - Joint mobility
 - Hand volume
 - Skin temperature
Timing of transfer

- **Repaired nerve:**
 - Wait until no muscle recovery is possible
 - Recovery of sensibility of the limb
- **Prognosis of muscle recovery:**
 - **Good:**
 - nerve repair is accurate without tension
 - In the same limb segment as the affected muscle
 - **Fair:** in the limb segment proximal to the muscle
 - **Poor:** in two segments proximal to the muscle
- **Early transfer:** must not leave imbalance in donor site.
Timing of transfer

• Repaired nerve cont.
 - The time of waiting for recovery
 • 3 years in brachial plexus paralysis
 • 2 years in peripheral nerve in the arm
 • 18 months in the forearm - wrist lesions
Timing of transfer

- Degenerative lesions:
 - Probability of expansion
 Pay attention = weakness in the transferred muscle

 In leprosy: neurolysis may protect from aggravation
Radial nerve palsy
Radial nerve

- Posterior cord (Brachial plexus)
- C5→C8 (most from C7)
- In the arm:
 - Between the medial and long heads of triceps
 - Direct contact with humerus: 10 cm proximal to lateral epicondyle
 - Branches:
 - Triceps (unlikely to paralyze in humerus fractures)
 - Brachioradialis
 - ECRL
 - Often to brachialis (musculocutaneous n.)
Radial nerve

- Bifurcation: at the level of lateral epicondyle (4cm above and below it)
 - Two branches:
 - Superficial (sensor)
 - Goes under brachioradialis
 - Sense: Dorsum of the write and hand (lateral part)
 - Motor: ECRB (56%)
 - Deep (posterior interosseous n.)
 - Goes between two heads of supinator
 - Motor: EDC - EDM - ECU - APL - EPL - EPB - EIP
 - Motor: ECRB (36%)
 - terminal sensor branches
Radial nerve palsy

Etiology:

- **Penetrating injuries** (lower arm - upper forearm)
- **Fracture of the humerus:**
 - 2-15%
 - Comminuted fractures in the middle third
 - Holstein-Lewis: spiral oblique fracture of distal humerus
Radial nerve palsy

Wrist drop
Radial nerve palsy

- Neuropraxia, axonotmesis → high recovery rate (intact myelin sheaths)

- Neurotmesis → nerve repair/graft → 77% return of some muscle function.
Radial nerve palsy

Principles of treatment:
- Closed fractures / closed injuries:
 - Observation → if no recovery (3-4 months) → neurorrhaphy neurolysis
 - After humerus reduction → early exploration
- Open fractures → exploration + repair
- Delayed palsies → observation
Radial nerve palsy

A dynamic splint with an extension assist for the wrist MP joints of the fingers and abduction or extension assist for the thumb.
Radial nerve palsy

Table 55.1. Transfers for Radial Nerve Palsy

<table>
<thead>
<tr>
<th>Transfer</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Standard” transfer</td>
<td>Requires little retraining</td>
<td>Unable to extend fingers and wrist simultaneously</td>
</tr>
<tr>
<td></td>
<td>Predictable</td>
<td>Dominance of radial forces across the wrist</td>
</tr>
<tr>
<td>FCR transfer</td>
<td>Maintains FCU as an ulnar wrist flexor—important in heavy laborer</td>
<td>Unable to fully extend fingers & wrist simultaneously</td>
</tr>
<tr>
<td>Modified Boyes transfer</td>
<td>Able to extend wrist and fingers simultaneously; independent control of</td>
<td>Potential flexion or extension deformities of the donor finger</td>
</tr>
<tr>
<td></td>
<td>index and thumb from other fingers for pinch</td>
<td>PIP joints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transfer not synergistic with potential for difficult rehabilitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential for adhesions at interosseous membrane</td>
</tr>
</tbody>
</table>

ECRB, extensor carpi radialis brevis; PT, pronator teres; EDC, extensor digitorum communis; FCU, flexor carpi ulnaris; PL, palmaris longus; EPL, extensor pollicis longus; FCR, flexor carpi radialis; APL, abductor pollicis longus; EPB, extensor pollicis brevis; EIP, extensor indicis proprius; FDS III, flexor digitorum superficialis to the long finger; FDS IV, flexor digitorum superficialis to the ring finger.
Radial nerve palsy - Standard
Radial nerve palsy – FCR transfer
Radial nerve palsy – FCR transfer

- Extensor digitorum communis
- Flexor carpi radialis
- Third dorsal wrist compartment
- Extensor pollicis longus
- Extensor pollicis longus tendon
- Palmaris longus
Radial nerve palsy

Postoperative care:
• Splint:
 - Wrist + fingers = full extension
 - Thumb = full extension + abduction
 - Elbow = 90° flexion
 - Forearm = neutral
• After 10 days → suture removal → long arm cast
• After 3 months: splint + physiotherapy
 » Wrist 45°
 » MP joints = 20° flexion
 » PIP – DIP joints free
Radial nerve palsy

Posterior interosseous palsy:
- Brachioradialis + ECRL + ECRB: intact
- Technique:
 • The same

We do not use FCU: to retain ulnar deviation force
Radial nerve palsy

Early tendon transfer: PT for ECRB

- Internal fixation (brace free)

- Indications:
 - Poor prognosis for nerve recovery
 - High radial n. laceration
 - Long nerve graft
 - Job related conditions (bracing)
Radial nerve palsy

Pitfalls & complications:

• Flexion or hyper extension contracture of PIP joint
 After FDS transfer
• rehabilitation
Median nerve palsy
Median nerve

- **Medial and lateral roots (Brachial plexus)**
- **In the arm:**
 - with brachial artery (in front of it)
 - Branches:
 - Sympathetic branches for brachialis a.
- **In the elbow:**
 - Medial to brachial artery
- **In the forearm:**
 - Between two heads of pronator teres then posterior to FDS
- **At the wrist:**
 - Behind palmaris longus
Median nerve - Anatomy

1. Branches to: pronator teres - plmaris longus - flexor carpi radialis - flesor digitorum superficialis

2. Anterior interosseous nerve:
 • Motor deep muscles (flexor digitorum profundus II_III - pronator quadratus - flexor pollicis longus)
 • Sensory: wrist - carpal joints

3. Between FDS - FDP
4. Palmar cutaneous branch
5. Carpal tunnel
6. Branch to thenar eminence
7. Branches two radial lumbricals - digital nerves
Median nerve - sensation
Median nerve

Table 56.1. Muscles Innervated by the Median Nerve

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexor Carpi Radialis (FCR)</td>
<td>Wrist Flexion</td>
</tr>
<tr>
<td>Palmaris Longus (PL)</td>
<td>Wrist Flexion</td>
</tr>
<tr>
<td>Pronator Teres (PT)</td>
<td>Forearm Pronation</td>
</tr>
<tr>
<td>Pronator Quadratus (PQ)</td>
<td>Forearm Pronation</td>
</tr>
<tr>
<td>Flexor Digitorum Superficialis (FDS)</td>
<td>PIP Flexion</td>
</tr>
<tr>
<td>Flexor Digitorum Profundus (FDP)</td>
<td>PIP and DIP Flexion</td>
</tr>
<tr>
<td>Flexor Pollicis Longus (FPL)</td>
<td>IP Thumb Flexion</td>
</tr>
<tr>
<td>Abductor Pollicis Brevis (APB)</td>
<td>Thumb Palmar Abduction, Pronation</td>
</tr>
<tr>
<td>Opponens Pollicis (OP)</td>
<td>Thumb Pronation</td>
</tr>
<tr>
<td>Flexor Pollicis Brevis (FPB)</td>
<td>Thumb MP Flexion</td>
</tr>
</tbody>
</table>
Median nerve palsy - Examination

• Pronator teres:
 effects more with elbow extended
 ↓
 we examine pronation in flexion and supination
Median nerve palsy - Examination

- FDS: flexion of PIP joint, we hold the remained finger in extension
- FDP: flexion of DIP joint
Median nerve palsy - Examination

• FPL: flexion of IP joint
Median nerve palsy - Examination

- Thumb opposition:
 - Palmar abduction of the thumb
 - Flexion of the MP joint
 - Pronation of the thumb
 - Radial deviation of the proximal phalanx
 - Motion of the thumb towards the fingers

 The APB is the most important

Extrinsic muscles: stabilize the MP-IP joints while the CM joint is free
Median nerve palsy - Examination

Normal hand
Thumb is perpendicular to plane of palm

Median nerve lesions
Thumb is externally rotated into plane of palm. Thenar eminence is wasted.
Median nerve palsy - opposition

Trick movement: the pinch is at the base of the thumb.

↓

Fixed adduction and external rotation of the thumb
Median nerve palsy

Etiology:
- Trauma (laceration - traction - fracture - gun shot)
- Chronic compression neuropathy
- Diabetic peripheral neuropathy
- Viral and leprematous infection
Median nerve palsy

- Neurorrhaphy of median nerve has poor prognosis (despite microsurgical techniques)
- Joint fusion:
 - Especially in FDP palsy (normal FDS)
 - Simple operation
 - does not restore mobility.
- Tendon transfer:
 - Require surgical skill - rehabilitation
 - Restore mobility
Median nerve palsy - opposition

Non surgical concepts:
- Frequent range of motion
- Opposition splint
Median nerve palsy - opposition

Surgical concepts:
• Release contractures (web space)
 - Dividing the fascia
 - Z plasty of the web
 - CM joint arthrodesis
 - Excision of the trapezium
• Correct the rotation deformity (fusion):
 - MP joint in 15° with slight internal rotation.
 - IP joint in 20°
Median nerve palsy - opposition

Surgical concepts cont.:

- **Tendon transfer:**
 - Force must pull from the direction of pisiform (parallel to APB)
 - Insertion is to the tendon of APB.
 - Choices: FDS - EIP - EDQ - ECU - PL - ADQ - FPL - ECRL
Median nerve palsy - opposition

Transfer of FDS of ring finger (Riordan)

- Rehabilitation: to bring the thumb to the ring finger
Median nerve palsy – opposition

EIP transfer
Median nerve palsy - opposition

FCU with FDS ring finger (Groves-Goldner)

• Extension of the wrist provides opposition of the thumb
Median nerve palsy - opposition

ADQ transfer
Postoperative care:

- 4 weeks of immobilization:
 - Wrist = 30° palmar flexion
 - MP joint = maximal flexion
 - PIP – DIP = 20 flexion
 - Maximal thumb abduction

- Then:
 - Physical therapy
 - Gentle resistance at 6 weeks
Median nerve palsy

- Tendon transfer for FPL palsy:
 - Choices:
 - FDS: not available in high median nerve palsy (fusion is the choice)
 - Brachioradialis

- Tendon transfer for FDP palsy:
 - FDP (side to side)
 - ECRB

 If FDS isn’t available → DIP joint fusion
Median nerve palsy

Pitfalls and complications:
- Uncorrected preoperative joint stiffness
- Surgical technique
- Rehabilitation
- Swan neck deformity after FDS use.
Ulnar nerve palsy
Ulnar nerve

- **Medial cord (Brachial plexus)**
- **C8 – T1**
- **In the arm:**
 - Medially in the flexor compartment
 - In the lower third: pierces the intermuscular septum → behind medial epicondyle
 - No branches in the arm
- **In the forearm:**
 - Between two heads of FCU then under it
- **In the wrist:**
 - Across the front of the flexor retinaculum
Ulnar nerve

- Dorsal ulnar cutaneous nerve
- Palmar cutaneous sensory branch
- Hypothenar motor branch
- Digit sensory branch
- Intrinsic muscles
Ulnar nerve

- **Motor:**
 - FCU
 - FDP (ring and little finger)
 - Interosseous muscles (dorsal - palmar)
 - Lumbricalis (III - IV)
 - Hypothenar group (ADQ - FDQ - ODQ)
 - Adductor pollicis

- **Sensor:** medial part of hand - IV, V fingers
Ulnar nerve- Sense

1- ulnar n. 2- median n. 3- radial n.
Ulnar nerve palsy

May affect the:

• Flexion and ulnar deviation of the wrist
• Flexion of ring and little fingers
• Independent flexion of MP joint of all fingers
• IP joint extension
• Abd. Add. Of all fingers
• Add. Flexion of CM joints
• Add. Flexion of thumb MP joint
Ulnar nerve palsy - FCU

FCU : the strongest in the forearm
- Important in : humming - use the knife - swing an ax
- High ulnar paralysis → paralysis of FCU :
 - Feel of weakness
 - No loss of function
 - No need to transfer : may be (FCR)
Ulnar nerve palsy - FDP

FDP (ring - little fingers)

High ulnar palsy

\[\downarrow \]
- Weakness
- Reversal of the metacarpal arch

Choices:

- Side to side suture of FDP
- ECRL transfer (rebalance the wrist)
Ulnar nerve palsy - MP joint

- MP joint extension
- No full IP extension

Claw hand
Ulnar nerve palsy- grasp

- normal grasp → flexing from proximal to distal
- Paralysis → MP extension + flexed IP joint (claw hand)
Ulnar nerve palsy – grasp
Ulnar nerve palsy - grasp
Ulnar nerve palsy – grasp

Pressure sores
Ulnar nerve palsy – grasp

To Prevent MP extension:
Tenodesis – capsulodesis - bone block
Ulnar nerve palsy - IP joints

IP joint extension:

- **three mechanisms**
 - Lumbricalis + interosseous (lateral band)
 - Long extensors (MP joints are flexed)
 - Lumbricalis
Ulnar nerve palsy – IP joints

Bouvier manoeuvre:

3 possibilities:
– Easy extension
– Hard extension
– No extension
Ulnar nerve palsy – IP joints

IP extension transfer:

- **Tendon transfer to lateral bands** *(Steiles-Bunnell)*
 - MP flexion with PIP extension
 - May cause: swan neck deformity

- **Tendon transfer to flexor sheaths** *(Brooks-Zancolli)*
 - PIP extension by long extensors
Ulnar nerve palsy

Abd. Add. Of fingers:
- 8 tendons of interosseous muscles
 (dorsal-abductors & palmar-adductors)
- Most tasks are done with fingers adducted.
Finger Add. transfer:
- The purpose is to put fingers side to side
- Attached to radial side of III-IV-V fingers and ulnar side of II
- Index abductor (stable pinch)
Ulnar nerve palsy - pinch

Normal pinch

With index abducted

With index adducted

Key pinch
Ulnar nerve palsy- Choices for intrinsic transfer

FDS of ring finger + grafts ↓
Attach to extensor aponeurosis ↓
Become PIP extensors (MP flexion with PIP extension)

Complication:
- Swan-neck deformity
Habit of wrist flexion:
- An attempt to extend the IP joints
- It creates tenodesing effect on the long extensors

\[\downarrow \]

Failed Bunnell modified transfer

\[\downarrow \]

Riordan transfer
Ulnar nerve palsy- Choices for intrinsic transfer

FCR
- Transferred to the dorsum
- + 4 tendon grafts
 ↓
 Attach to radial sides of extensor apponeurosis

Indication:
- Sever clowing hand
- Flexion contracture of the wrist
- Flexion habit

Riordan transfer
Ulnar nerve palsy- Choices for intrinsic transfer

ECRB
Lengthened by tendon grafts
↓
Radial side of III-IV-V
+
ulnar side of II

Difficulty of reeducation

Brand transfer
Ulnar nerve palsy - Choices for intrinsic transfer

FCRL
To the volar side of forearm
↓
Through carpal tunnel
↓
4 tendon grafts
↓
The same attachments

Brand transfer
Ulnar nerve palsy- Choices for intrinsic transfer

Indication:
Weak flexors-extensors

Fowler transfer
Ulnar nerve palsy - Choices for intrinsic transfer

PL + EIP
↓
4 tendon grafts
↓
The same attachments

Riordan transfer
(fowler modification)
Ulnar nerve palsy – Pitfalls

Insertion to the lateral band (extensor appeneurosis)

↓

» MP flexion + PIP extension
» No MP flexion without PIP extension
» May produce swan-neck deformity

Modification:
Brooks-Jones: insertion to the flexor sheaths
MP flexion + IP extension with long extensors
Ulnar nerve palsy – Pitfalls

Zancolli (lasso operation)

FDS of each tendon to flexor sheaths

MP flexion

+ IP extended with long extensors

Complication:

• No PIP flexion
• DIP persistent flexion

↓
Ulnar nerve palsy – Pitfalls

- Flexion of PIP with DIP
- Provides more satisfactory hand
Ulnar nerve palsy- Capsulodesis

Zancolli capsulodesis:
Supple MP joints (Bouvier = easy extension)
Make MP flexion (40° - 30° - 20° in V - IV - III)
Ulnar nerve palsy - Capsulodesis

Zancolli capsulodesis
Post operative
Ulnar nerve palsy - Tenodesis

4 tendon grafts
Inserted to extensor carpal ligament

Fowler tenodesis
Ulnar nerve palsy - Tenodesis

Riordan tenodesis

Tendon strands fro ECRB - ECU
Ulnar nerve palsy - thumb adduction
Ulnar nerve palsy - thumb adduction
Ulnar nerve palsy - thumb adduction

FDS IV

↓

Around palmar fascia

↓

Insertion to

- EPL
- APB

Brand technique
Ulnar nerve palsy - thumb adduction

BR – ECRL – ECRB
With tendon graft
↓
To adductor brevis insertion
Ulnar nerve palsy- thumb adduction

Smith technique
ECRB transfer through 2nd space
Ulnar nerve palsy - thumb adduction

EIP transfer
References

- Chapma’s Orthopedic surgery
- Campbell’s Orthopedic surgery
• This lecture is one of a series of lectures were prepared and presented by residents in the department of orthopedics in Damascus hospital, under the supervision of Dr. Bashar Mirali.

• This site is not responsible of any mistake may exist in this lecture.

Dr. Muayad Kadhim
د. مؤيد كاظم